Posts filled under #itsallaboutlove

J'ai beaucoup de choses

J'ai beaucoup de choses dire sur les standards de beaut et de russite de notre socit et l'impact qu'ils ont eu sur les femmes et les hommes de plusieurs gnrations. J'ai beaucoup de choses dire sur les mdias traditionnels qui, malgr les nombreuses voix mobilises pour sensibiliser cette mdiocre reprsentation, ne se dmnent pas corps et me pour faire tat de la ralit. Cette ralit, c'est que notre diversit est notre meilleur atout. Pourtant, encore aujourd'hui, le mot diffrence fait peur, fait rire, fait mal. J'ai la chance d'tre blanche, d'tre ne dans un environnement ais et d'avoir t soutenue par des personnes merveilleuses. Pourtant, jusque rcemment, parce que je suis quotidiennement conditionne suivre des modles prcis et limits, je croyais ne pas avoir droit de m'aimer, de me valoriser, de me laisser une chance. Je me rends compte prsent de tout ce que j'ai rat parce que j'ai cout, regard, lu et suivi aveuglment. Alors je voudrais remercier celles qui m'ont aide ces derniers mois ouvrir les yeux : @tessholliday @bodyposipanda @skromney @selfloveclubb @imparfaites.be @mynameisjessamyn @glitterandlazers @helenanderz @calliethorpe @sarahsapora. Merci @anna_norcia sans qui j'aurais probablement continu me cacher, me dtester et me croire infrieure. Merci ma maman, mes proches, mes amies et vous tous d'tre l, de me soutenir et de croire en mes capacits. tous ceux et toutes celles qui pensent que leur corps, leur couleur, leur sexualit, leur handicap, leur situation les dfinit, oubliez tout ce que vous avez appris. C'est votre cur, votre sourire, votre courage, votre bienveillance, vos choix qui dterminent la personne que vous tes. Je ne suis peut-tre pas parfaite, mais j'emmne mon cur l o je veux qu'il soit et c'est ce qui compte. Prenez soin de vous, prenez soin de votre mental, profitez de la vie, ayez de l'empathie pour les autres et rpandez l'amour autour de vous. #bodypositive #effyourbeautystandards #positivemind #behappy #bekind #lifestyle #changetheworld #santamonica #sea #beach #summer #holidays #california #usa #itsallaboutlove #selfcare #selfconfidence #selflove #mentalhealth

An extract on #itsallaboutlove

In the special theory of relativity, mass and energy are equivalent (as can be seen by calculating the work required to accelerate an object). When an object's velocity increases, so does its energy and hence its mass equivalent (inertia). It thus requires more force to accelerate it the same amount than it did at a lower velocity. Newton's Second Law F = d p / d t {\displaystyle {\vec {F}}=\mathrm {d} {\vec {p}}/\mathrm {d} t} remains valid because it is a mathematical definition. But in order to be conserved, relativistic momentum must be redefined as: p = m 0 v 1 v 2 / c 2 {\displaystyle {\vec {p}}={\frac {m_{0}{\vec {v}}}{\sqrt {1-v^{2}/c^{2}}}}} where v {\displaystyle v} is the velocity and c {\displaystyle c} is the speed of light m 0 {\displaystyle m_{0}} is the rest mass. The relativistic expression relating force and acceleration for a particle with constant non-zero rest mass m {\displaystyle m} moving in the x {\displaystyle x} direction is: F x = 3 m a x {\displaystyle F_{x}=\gamma ^{3}ma_{x}\,} F y = m a y {\displaystyle F_{y}=\gamma ma_{y}\,} F z = m a z {\displaystyle F_{z}=\gamma ma_{z}\,} where the Lorentz factor = 1 1 v 2 / c 2 . {\displaystyle \gamma ={\frac {1}{\sqrt {1-v^{2}/c^{2}}}}.} In the early history of relativity, the expressions 3 m {\displaystyle \gamma ^{3}m} and m {\displaystyle \gamma m} were called longitudinal and transverse mass. Relativistic force does not produce a constant acceleration, but an ever-decreasing acceleration as the object approaches the speed of light. Note that {\displaystyle \gamma } approaches asymptotically an infinite value and is undefined for an object with a non-zero rest mass as it approaches the speed of light, and the theory yields no prediction at that speed. If v {\displaystyle v} is very small compared to c {\displaystyle c} , then {\displaystyle \gamma } is very close to 1 and F = m a {\displaystyle F=ma} is a close approximation. Even for use in relativity, however, one can restore the form of F = m A {\displaystyle F^{\mu }=mA^{\mu }\,} through the use of four-vectors. This relation is correct in relativity when F {\displaystyle F^{\mu }} is the four-force, m {\displaystyle m} is the invariant mass, and A {\displaystyle A^{\mu }} is the four-acceleration.

Dynamic equilibrium was first described by Galileo who noticed that certain assumptions of Aristotelian physics were contradicted by observations and logic. Galileo realized that simple velocity addition demands that the concept of an "absolute rest frame" did not exist. Galileo concluded that motion in a constant velocity was completely equivalent to rest. This was contrary to Aristotle's notion of a "natural state" of rest that objects with mass naturally approached. Simple experiments showed that Galileo's understanding of the equivalence of constant velocity and rest were correct. For example, if a mariner dropped a cannonball from the crow's nest of a ship moving at a constant velocity, Aristotelian physics would have the cannonball fall straight down while the ship moved beneath it. Thus, in an Aristotelian universe, the falling cannonball would land behind the foot of the mast of a moving ship. However, when this experiment is actually conducted, the cannonball always falls at the foot of the mast, as if the cannonball knows to travel with the ship despite being separated from it. Since there is no forward horizontal force being applied on the cannonball as it falls, the only conclusion left is that the cannonball continues to move with the same velocity as the boat as it falls. Thus, no force is required to keep the cannonball moving at the constant forward velocity. Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity. A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with kinetic friction. In such a situation, a force is applied in the direction of motion while the kinetic friction force exactly opposes the applied force. This results in zero net force, but since the object started with a non-zero velocity, it continues to move with a non-zero velocity. Aristotle misinterpreted this motion as being caused by the applied force. However, when kinetic friction is taken into consideration it is clear that there is no net force causing constant velocity motion.

logo