Posts filled under #ddobinsta

Ostatnio pokazywaam Wam n

Ostatnio pokazywaam Wam na Instastories paczk od @goldenrosepolska ___________________________ oto Lip Marker! Jest to pomadka ktra rozprowadza si bardzo szybko o wysycha w kilka chwil. Utrzymuje si nawet do 12 godzin i zostaa wzbogacona o ekstrakt z aloesu ___________________________ Co sdzicie o kolorach ? #goldenrosepolska#goldenrose#goldenrosematte#goldenrosecosmetics#cosmetic#cosmetics#kosmetyki#makeup#makeuplover#makeuprevolution#me#polishgirl#polishgirls#instagirl#instakinia#beauty#beautygirl#beautyqueen#queen_k#kinnn#polecam#instalips#lipstick#lip#ddob#ddobinsta#lovethis#tatto#tattoo#tattoogirl

Full face 
Nie mogam dzi

Full face Nie mogam dzi zrobi praktycznie adnego zdjcia caej twarzy ktre pokae wszystko co chce.. o ile oczy wyszy wyjtkowo dobrze (poza zieleni na wosach a nie blondem), to full face nie chcia si uchwyci wiato wyjtkowo nie chciao ze mn wsppracowa i zjadao kolory.. FACE: @evelinecosmetics foundation, @kontigo MOIA concealer 01, MOIA rice powder, @pierrerene_professional Highlighting powder, @ecolore_mineral_cosmetics Bronzer Diani BROWS: @goldenrosepolska Brow Kit 02 Ash wax&powder EYES: @makeups evolution Amplified Inspiration palette, @zoevacosmetics Blanc Fusion palette ( Vision of gold ) @mintishop @goldenrosepolska Metallic Black Eyeliner, False Lashes Mascara LIPS: @goldenrosepolska Liquid matte lipstick 16 + orange eyeshadow #sunset #sunsetmakeup #makeup #makeuprevolution #polishgirl #beauty #beautyblogger #kosmetykiofficial #makeuppl #zoeva #blancfusion #visionsofgold #summermakeup #eyemakeup #blonde #makeupaddicts #polskadziewczyna #ddob #ddobinsta #goldenrosepolska #summer #summervibes #me #selfie #smile #makeuplook #ecoloremineralcosmetics #letniewyzwanie #piggypeg

An extract on #ddobinsta

If a rigid body Q is rotating about any line through the center of mass then it has rotational kinetic energy ( E r {\displaystyle E_{\text{r}}\,} ) which is simply the sum of the kinetic energies of its moving parts, and is thus given by: E r = Q v 2 d m 2 = Q ( r ) 2 d m 2 = 2 2 Q r 2 d m = 2 2 I = 1 2 I 2 {\displaystyle E_{\text{r}}=\int _{Q}{\frac {v^{2}dm}{2}}=\int _{Q}{\frac {(r\omega )^{2}dm}{2}}={\frac {\omega ^{2}}{2}}\int _{Q}{r^{2}}dm={\frac {\omega ^{2}}{2}}I={\begin{matrix}{\frac {1}{2}}\end{matrix}}I\omega ^{2}} where: is the body's angular velocity r is the distance of any mass dm from that line I {\displaystyle I\,} is the body's moment of inertia, equal to Q r 2 d m {\displaystyle \int _{Q}{r^{2}}dm} . (In this equation the moment of inertia must be taken about an axis through the center of mass and the rotation measured by must be around that axis; more general equations exist for systems where the object is subject to wobble due to its eccentric shape).

In quantum mechanics, observables like kinetic energy are represented as operators. For one particle of mass m, the kinetic energy operator appears as a term in the Hamiltonian and is defined in terms of the more fundamental momentum operator p ^ {\displaystyle {\hat {p}}} . The kinetic energy operator in the non-relativistic case can be written as T ^ = p ^ 2 2 m . {\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}.} Notice that this can be obtained by replacing p {\displaystyle p} by p ^ {\displaystyle {\hat {p}}} in the classical expression for kinetic energy in terms of momentum, E k = p 2 2 m . {\displaystyle E_{\text{k}}={\frac {p^{2}}{2m}}.} In the Schrdinger picture, p ^ {\displaystyle {\hat {p}}} takes the form i {\displaystyle -i\hbar \nabla } where the derivative is taken with respect to position coordinates and hence T ^ = 2 2 m 2 . {\displaystyle {\hat {T}}=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}.} The expectation value of the electron kinetic energy, T ^ {\displaystyle \langle {\hat {T}}\rangle } , for a system of N electrons described by the wavefunction | {\displaystyle \vert \psi \rangle } is a sum of 1-electron operator expectation values: T ^ = | i = 1 N 2 2 m e i 2 | = 2 2 m e i = 1 N | i 2 | {\displaystyle \langle {\hat {T}}\rangle ={\bigg \langle }\psi {\bigg \vert }\sum _{i=1}^{N}{\frac {-\hbar ^{2}}{2m_{\text{e}}}}\nabla _{i}^{2}{\bigg \vert }\psi {\bigg \rangle }=-{\frac {\hbar ^{2}}{2m_{\text{e}}}}\sum _{i=1}^{N}{\bigg \langle }\psi {\bigg \vert }\nabla _{i}^{2}{\bigg \vert }\psi {\bigg \rangle }} where m e {\displaystyle m_{\text{e}}} is the mass of the electron and i 2 {\displaystyle \nabla _{i}^{2}} is the Laplacian operator acting upon the coordinates of the ith electron and the summation runs over all electrons. The density functional formalism of quantum mechanics requires knowledge of the electron density only, i.e., it formally does not require knowledge of the wavefunction. Given an electron density ( r ) {\displaystyle \rho (\mathbf {r} )} , the exact N-electron kinetic energy functional is unknown; however, for the specific case of a 1-electron system, the kinetic energy can be written as T [ ] = 1 8 ( r ) ( r ) ( r ) d 3 r {\displaystyle T[\rho ]={\frac {1}{8}}\int {\frac {\nabla \rho (\mathbf {r} )\cdot \nabla \rho (\mathbf {r} )}{\rho (\mathbf {r} )}}d^{3}r} where T [ ] {\displaystyle T[\rho ]} is known as the von Weizscker kinetic energy functional.